

Substrate Su Ŵ 5 Bose/ nucleophile Ez But this can Change 2) E2, SH2, E, , SH1 w/ factors & So this is not a hard rule 3) Solvent polar Su2/EZ 1) Temperature High Relative ors LG

E2 over SH2 minor Major

NaOH ЭH CH3CN LOC OH base 5not aprotic Sol High Heat good LG

NUCLEOPHILIC SUBSTITUTION AND ELIMINATION

The question is how do we discern when substitution is favored verse elimination? The answer is found partly in how we should think about reactions of alkyl halides.

The characteristic reaction of alkyl halides (or alkyl tosylates) with a Lewis base is **elimination**, special conditions are required to promote substitution.

Given here is a set of guidelines (not absolutes) that can be used to arrive at the probable solution to nucleophilic substitution/elimination problems.

	Substitution	Elimination	
substrate	S_N^2 benzyl = allyl > Me > 1 ^o > 2 ^o g-baloketone, g-balogeter, g-balonitrile	E2 3° > 2° > 1° Slowest	
solvent	polar aprotic faster	polar aprotic	
nucleophile	good nuc (weaker base than OH ⁻)	bulky or strong base $\geq OH^{-}$	
leaving group Temp	sulfonate > I > Br > Cl low	sulfonate > I ⁻ > Br ⁻ > Cl ⁻ high	
substrate	$S_{N}1$ $3^{\circ} > 2^{\circ}$ is the list	E1 3° > 2° > 1° Slowest	
solvent	polar protic	polar protic	
nucleophile	weak nuc (no anions!)	any anionic base	
leaving group	sulfonate $> I^- > Br^- > Cl^-$	sulfonate > I^- > Br^- > Cl^-	
Temp	low	high	

Classification of Nucleophiles

I –, HS – , RS –
Br , OH , RO , CN , N_3
NH_3 , Cl^- , F^- , RCO_2^-
H ₂ O, ROH
RCO ₂ H

Nucleophilic Constants of Various
Nucleophiles

Nucleophile	n _{CH3} I	pK _a of conjugate acid
CH ₃ OH	0.0	-1.7
F -	2.7	3.45
CH ₃ CO ₂	4.3	4.8
Cl ⁻	4.4	-5.7
NH ₃	5.5	9.25
N ₃ -	5.8	4.75
C ₆ H ₅ O ⁻	5.8	9.89
Br [–]	5.8	-7.7
СН₃О [−]	6.3	15.7
OH_	6.5	15.7
(CH ₃ CH ₂) ₃ N	6.7	10.70
CN -	6.7	9.3
I —	7.4	-10.7
(CH ₃ CH ₂) ₃ P	8.7	8.69
C ₆ H ₅ S -	9.9	6.5

Solvents Which Promote S _N 2/E2 (bimolecular)
Acetone Dimethyl sulfoxide (DMSO) <i>N,N-</i> Dimethylformamide (DMF) Acetonitrile Hexamethylphosphoramide (HMPA)

Solvents Which Promote S_N1/E1 (Unimolecular/Ionizing)

Increasing nucleophilicity (solvolysis)	Ethanol Methanol 50% Aqueous Ethanol Water Acetic Acid Formic Acid Trifluoroethanol Trifluoroacetic acid
---	---

NUCLEOPHILIC SUBSTITUTION AND ELIMINATION

The question is how do we discern when substitution is favored verse elimination? The answer is found partly in how we should think about reactions of alkyl halides.

The characteristic reaction of alkyl halides (or alkyl tosylates) with a Lewis base is **elimination**, special conditions are required to promote substitution.

Given here is a set of guidelines (not absolutes) that can be used to arrive at the probable solution to nucleophilic substitution/elimination problems.

E-0 CH20

Classification of Nucleophiles

Very good nucleophile I^-, HS^-, RS^- Good nucleophile Br^- , OH^- , RO^- , CN^- , N_3^- Fair nucleophile NH_3 , CI^- , F^- , RCO_2^- Weak nucleophile H_2O , ROHVery weak nucleophile RCO_2H

Nucleophilic Constants of Various
Nucleophiles

Nucleophile	n _{CHI}	pK_a of
	3	conjugate acid
CH ₃ OH	0.0	-1.7
F —	2.7	3.45
CH ₃ CO ₂	4.3	4.8
Cl ⁻	4.4	-5.7
NH ₃	5.5	9.25
N ₃ ⁻	5.8	4.75
$C_6H_5O^-$	5.8	9.89
Br [–]	5.8	-7.7
CH ₃ O	6.3	15.7
OH_	6.5	15.7
(CH ₃ CH ₂) ₃ N	6.7	10.70
CN -	6.7	9.3
I –	7.4	-10.7
(CH ₃ CH ₂) ₃ P	8.7	8.69
C ₆ H ₅ S -	9.9	6.5

V (CH₃CH₂)₃P C₆H₅S -Better Nuclear the les

Solvents Which Promote	
S _N 2/E2 (bimolecular)	_
Acetone	-
Dimethyl sulfoxide (DMSO)	
<i>N,N</i> -Dimethylformamide (DMF)	
Acetonitrile	
Hexamethylphosphoramide (HMPA	A)

Solvents Which Promote S_N1/E1 (Unimolecular/Ionizing)

NUCLEOPHILIC SUBSTITUTION AND ELIMINATION

The question is how do we discern when substitution is favored verse elimination? The answer is found partly in how we should think about reactions of alkyl halides.

The characteristic reaction of alkyl halides (or alkyl tosylates) with a Lewis base is *elimination*, special conditions are required to promote substitution.

Given here is a set of guidelines (not absolutes) that can be used to arrive at the probable solution to nucleophilic substitution/elimination problems.

	Substitution	Elimination	
substrate	S_N^2 benzyl = allyl > Me > 1 ^o > 2 ^o α-haloketone, α-haloester, α-halonitrile	E2 $3^{\circ} > 2^{\circ} > 1^{\circ}$	
solvent	polar aprotic	polar aprotic	
nucleophile	good nuc (weaker base than OH^{-})	bulky or strong base $\geq OH^{-}$	
leaving group	sulfonate > I ⁻ > Br ⁻ > Cl ⁻	sulfonate > I^- > Br^- > Cl^-	
Temp	low	high	
_			
	S _N 1	E1	

substrate	$3^{\circ} > 2^{\circ}$
solvent	polar protic
nucleophile	weak nuc <mark>(no anions!</mark>)
leaving group	sulfonate > $I^- > Br^- > Cl^-$
Temp	low

 $3^{\circ} > 2^{\circ} > 1^{\circ}$

polar protic any anionic base

sulfonate > I^- > Br^- > $Cl^$ high

Classification of Nucleophiles

Very good nucleophile	I –, HS – , RS –
Good nucleophile	Br $^-$, OH $^-$, RO $^-$, CN $^-$, N $_3^-$
Fair nucleophile	NH_3 , Cl^- , F^- , RCO_2^-
Weak nucleophile	H ₂ O, ROH
Very weak nucleophile	RCO₂H

Nucleophilic Constants of Various
Nucleophiles

Nucleophile	n _{CH3} I	pK _a of conjugate acid
CH ₃ OH	0.0	-1.7
F -	2.7	3.45
CH ₃ CO ₂	4.3	4.8
Cl ⁻	4.4	-5.7
NH ₃	5.5	9.25
N ₃ ⁻	5.8	4.75
$C_6H_5O^-$	5.8	9.89
Br ⁻	5.8	-7.7
CH ₃ O ⁻	6.3	15.7
OH ⁻	6.5	15.7
(CH ₃ CH ₂) ₃ N	6.7	10.70
CN -	6.7	9.3
I —	7.4	-10.7
(CH ₃ CH ₂) ₃ P	8.7	8.69
C_6H_5S –	9.9	6.5

Solvents Which Promote S _N 2/E2 (bimolecular)
Acetone Dimethyl sulfoxide (DMSO) <i>N,N</i> -Dimethylformamide (DMF) Acetonitrile Hexamethylphosphoramide (HMPA)

Solvents Which Promote S_N1/E1 (Unimolecular/Ionizing)

Increasing nucleophilicity (solvolysis)	Ethanol Methanol 50% Aqueous Ethanol Water Acetic Acid Formic Acid Trifluoroethanol Trifluoroacetic acid
---	---